A mathematical model describing the mechanical kinetics of kinesin stepping

نویسندگان

  • Hamidreza Khataee
  • Alan Wee-Chung Liew
چکیده

MOTIVATION Kinesin is a smart motor protein that steps processively forward and backward along microtubules (MTs). The mechanical kinetics of kinesin affecting its stepping behavior is not fully understood. Here, we propose a mathematical model to study the mechanical kinetics of forward and backward stepping of kinesin motor based on the four-state discrete stochastic model of the motor. RESULTS Results show that the probabilities of forward and backward stepping can be modeled using the mean probabilities of forward and backward kinetic transitions, respectively. We show that the backward stepping of kinesin motor starts when the probability of adenosine diphosphate (ADP) binding to the motor is much higher than that of adenosine triphosphate (ATP) binding. Furthermore, our results indicate that the backward stepping is related to both ATP hydrolysis and synthesis with rate limiting factor being ATP synthesis. Low rate of ATP synthesis under high backward loads above 10 pN is also suggested as a reason for the detachment of kinesin motor from MT in the kinetic state MTċKinesinċADPċPi. AVAILABILITY AND IMPLEMENTATION The code for this work is written in Visual C# and is available by request from the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain.

The two-headed kinesin motor harnesses the energy of ATP hydrolysis to take 8-nm steps, walking processively along a microtubule, alternately stepping with each of its catalytic heads in a hand-over-hand fashion. Two persistent challenges for models of kinesin motility are to explain how the two heads are coordinated ("gated") and when the translocation step occurs relative to other events in t...

متن کامل

Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle.

To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously u...

متن کامل

Processive kinesins require loose mechanical coupling for efficient collective motility.

Processive motor proteins are stochastic steppers that perform actual mechanical steps for only a minor fraction of the time they are bound to the filament track. Motors usually work in teams and therefore the question arises whether the stochasticity of stepping can cause mutual interference when motors are mechanically coupled. We used biocompatible surfaces to immobilize processive kinesin-1...

متن کامل

Collective Dynamics of Kinesin-1

Motor proteins are the engines of biology, converting chemical energy to mechanical work in cells. Kinesin-1 is a motor protein that transports vesicles towards the plus end of microtubules, widely believed to be responsible for anterograde transport of synaptic vesicles in neurons. Advances in single-molecule techniques have allowed the characterization of single kinesin motors in vitro at a r...

متن کامل

A Brownian Dynamics model of kinesin in three dimensions incorporating the force-extension profile of the coiled-coil cargo tether.

The kinesin family of motor proteins are involved in a variety of cellular processes that transport materials and generate force. With recent advances in experimental techniques, such as optical tweezers can probe individual molecules, there has been an increasing interest in understanding the mechanisms by which motor proteins convert chemical energy into mechanical work. Here we present a mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2014